Integration of raw materials indicators of energy technologies into energy system models
Talens Peiró, Laura; Martin, Nick; Villalba Méndez, Gara; Madrid-López, Cristina
OPEN ACCESS at Applied Energy, 2022, Vol.307, p. 118150 Raw materials and their related environmental impacts will play a key role in the implementation of […]
OPEN ACCESS at Applied Energy, 2022, Vol.307, p. 118150
Raw materials and their related environmental impacts will play a key role in the implementation of renewable energy infrastructures for decarbonization. Despite the growing amount of data quantifying raw materials for energy production technologies, few examples of these data sources are being included in current energy system models. Accordingly, this paper introduces possible pathways for integrating material-specific life cycle assessment outputs and material metabolism indicators into energy system models so that raw material requirements, and their associated impacts, can be accounted for. The paper discusses the availability of life cycle inventories, impact assessment methods and important output indicators. The material metabolism indicators most relevant to the current policy debate surrounding the European Green Deal–namely, material supply risk and contribution of recycled materials to total supply–are also discussed alongside the value of adding this information to energy system models. A methodology for using data from both approaches is offered and operationalised using four sub-technologies of both wind turbines and solar photovoltaic panels as case studies. The results show that considerable variation exists between and within the two groups for all indicators. The technologies with the lowest global warming potential, cumulative energy demand and supply risk are turbines with gearbox double-fed induction generators and cadmium telluride photovoltaics. Furthermore, wind turbines exhibit significantly higher recycling rates than photovoltaics. Ultimately, the integration of such methodologies into energy system models could greatly increase the awareness of raw material issues and guide policies that maximise compatibilities between resource availability and cleaner energy systems.